FleetWise EV300 Plugging fleets into electric vehicles

Gardine

Exowy

ake Shore

M TORONTO Atmospheric Fund

Partners in Project Green Webinar. December 2011.

TAF is the City of Toronto's climate change agency, dedicated to helping the City, its residents and businesses reduce their climate impact.

TAF leverages its own endowment to incubate, test & accelerate solutions with the potential to result in significant greenhouse gas emission reductions.

www.toronto.ca/taf

Grants to non-profits

Investments in for-profits & social enterprises

Direct program delivery through fundraising & partnerships

Public and private fleets jointly procure, drive, charge, evaluate and promote 300 electric vehicles in the GTA by 2012.

1. Deployment of EVs

- 2. Advocacy for EV-friendly policies & programs
- 3. Education & outreach on the business & environmental case for EVs

FleetWise EV300 Strategic & Fleet Partners

FleetWise EV300

4

15 Fleet Partners representing over 5,000 light-duty vehicles

Demand projections: 2011: 73-168 EVs 2012: 79-170 EVs

60 EVs on the road by end of 2011

6

M TORONTO Atmospheric Fund

FleetWise EV300: Helping fleets make the right choices

1. Determine the best fit

2. Business case development

3. Procurement assistance

4. Customized driver training

5. In-service performance monitoring

M TORONTO Atmospheric Fund

FleetWise EV300: Helping fleets make the right choices

FleetCarma

EValuation Calculator

eDriver Training

FleetWise EV300

TORONTO Atmospheric Fund

FleetCarma vehicle selector tool

How do EVs fit into your fleet? How will they perform based on your real-time usage pattern? What's a realistic solution for your fleet?

FleetCarma

M TORONTO Atmospheric Fund

FleetCarma: sample report

Conflectcarma. vehicle selector tool		ia.	Current Vehicle	Fleet: Vehicle: Unit: Log Dates: Log Time: Operation Ho	Name 2003 Toyota R 53-0310 4/8/2011 11:29 5/25/2011 2:44 47 Days 3 Hour urs: 25.07 Hours	av 4 Ca 9:33 AM - Ca 5:35 PM ^{rs} Tot Lon	Consumption: 9.9 L/100km 925 Wh/km Carbon Emissions: 233.1 g CO ₂ /km otal Distance Travelled: 1045.26 km ongest Single Day: 185 km	
		Toyota	Ford	Nissan	Mitsubishi	Toyota	Chevrolet	
			Rav 4	Transit Connect EV	LEAF	i-MiEV	Prius Plug-In	Volt
	Total Energy	[Wh/km]	925	191	160	130	287	275
ssions	Fuel Consumption	[L/100km]	9.9	0	0	0	2.3	1.5
& Em		[Wh/km]	925	0	0	0	212	141
Energy	Electrical Consumption	[Wh/km]	0	191	160	130	75	134
	Tailpipe CO ₂ Emissions	[g CO ₂ / km]	233.1	0	0	0	53	36
Capability	Range Capable		[% of days] [# of missed days]	93% 2	93% 2	93% 2	100% 0	100% 0
	Charge Capable		[% of days]	100%	100%	100%	100%	100%

Summary

Of the 30 active days, the TransitConnect-EV was range capable on 28 days, the Leaf was range capable on 28 days, and the i-MiEV was range capable on 28 days. All vehicles were charge capable. The vehicles evaluated would reduce energy consumption by 69%-86%. Tailpipe CO2 emissions would be reduced by 77-100%.

This report does not reflect the impact that driver behaviour training will have on EV range capability.

FleetWise EV300

M TORONTO Atmospheric Fund

FleetCarma: sample report

Daily Range Capability

ORONTO Atmospheric Fund

Vehicle not used on 18 of 48 total days logged.

FleetWise EV300

11

Driving Habit: Daily Utilization

M TORONTO Atmospheric Fund

3

What is the total cost of ownership? How does this compare to a conventional vehicle? What's the anticipated business case for an EV?

EValuation Annual Cost Comparison

M TORONTO Atmospheric Fund

A customized two-hour training course What is the environmental impact of transportation? Primer on plug-in solutions Benefits & concerns about EVs Tips for maximizing the performance of EVs Real-world scenarios & examples

eDriver Training

FleetWise EV300

16

M TORONTO Atmospheric Fund

Source: Mitsubishi Motors Canada

FleetWise EV300

17

Overwhelmingly positive

Some challenges w/ EVSE

Educate mechanics & drivers

Range anxiety – aware of it but not impeded by it

"There's a line up to reserve our EVs"

"Range anxiety is mitigated with proper planning & training"

"We have yet to have a negative experience – but we're ready"

M TORONTO Atmospheric Fund

Ongoing recruitment of EV300 Fleet Partners

- Establish an MOU
- Submit your fleet demand projections
- Deploy the FleetCarma selection tool

Assistance with procurement of EVs

- Liaise between OEMs & Fleet Partners
- Delivery of eDriver Training

In-service performance monitoring

-Datalogger installation-Individual + aggregated results-Sharing of experiences amongst fleets

Telling our story

- Media releases
- Press events
- Green Ambassadors

M TORONTO Atmospheric Fund

FleetWise EV300

20

TORONTO Atmospheric Fund

FleetWise EV300

Ben Marans Manager, Social Innovation & Transportation <u>bmarans@tafund.org</u> 416-393-6367

Toronto Atmospheric Fund www.toronto.ca/taf

DRIVING ONTARIO'S CLEAN ENERGY FUTURE

December, 2011

• 6.7 million light vehicles on the road

- Almost 12 billion litres of gasoline/year
- Emitting 7.4 million tonnes of CO²/year

Source: Statcan

Average vehicle uses 16.4 barrels of oil per year

100% of Ontario's oil is imported

Ontario GHG Emissions by Sector

Source: Ministry of Energy

POWER. Smarter.

Shift from on-peak to off-peak periods when possible to help manage electricity costs, reduce strain on the electricity system, and help the environment.

> Use this removable decal as a reminder of Time-of-Use (TOU) price periods.

Comparable cost of driving 100km in an EV and other popular vehicles

Figure 2. A comparison of PEV and conventional vehicle configurations. (A) battery electric vehicle, (B) series plug-in hybrid electric vehicle, (C) parallel plug-in hybrid electric vehicle, and (D) conventional internal combustion engine vehicle. (Courtesy Southern California Edison)

Plugin Drive Ontario

2011 Mitsubishi i-MiEV

2011 Ford Focus Electric

2011 Nissan LEAF

Prius Plug-in Hybrid

2011 Chevrolet VOLT

2010 Tesla Roadster

2012 Smart ED

2011 BMW ActiveE

VEHICLE	MANUFACTURER VEHICLE TYPE		ELECTRIC RANGE	BATTERY SIZE	MODEL YEAR
LEAF	Nissan	BEV	161 km	24 kWh	2011
VOLT	GM	PHEV	64 km	16 kWh	2011
ActiveE	BMW	BEV	193 km	32 kWh	2011
Transit Connect Electric	Ford	BEV	128 km	28 kWh	2011
Focus Electric	Ford	BEV	161 km	24 kWh	2011
i-MiEV	Mitsubishi	BEV	120 km	16 kWh	2011
Prius Plug-in Hybrid	Toyota	PHEV	23 km	5.2 kWh	TBA
Smart ED	Daimler	BEV	112 km	16 kWh	2012
RAV4-EV	Toyota	BEV	161 km	~35 kWh	2012

NEW MARKET ENTRANTS

VEHICLE	MANUFACTURER	NANUFACTURER VEHICLE TYPE		BATTERY SIZE	MODEL YEAR
Roadster	Tesla	BEV	394 km	53 kWh	2010
Karma	Fisker	PHEV	80 km	20 kWh	2011
Coda Sedan	Coda	BEV	161 km	37 kWh	2011
F3DM	BYD	PHEV	100 km	13.2 kWh	2011
еб	BYD	BEV	400 km	72 kWh	2011
Think City	Think!	BEV	193 km	24 kWh	2012
Model S	Tesla	BEV	357- 480 km	42-95 kWh	2012

BEV = Battery Electric Vehicle

PHEV = Plug-in Hybrid Electric Vehicle

Level 1 – 120v

Charge to 80%: 12-18 hours Cost: ~\$2,000 Voltage: 110v Amperage: 16-30A Power: 1.9-3.6kW

Level 2 – 240v

Charge to 80%: 6-8 hours Cost: ~\$3,000 Voltage: 240v Amperage: 30-70A Power: up to 6kW

J1772 EV Plug

- Standard EV Plug for North America, Europe and Japan
 - Level 1 and Level 2 Chargers

DC Level 3 – 400v

Voltage: 400v Amperage: 125A Power: up to 50kW

Charge to 80%: 20-30 minutes Cost: \$50,000+ Installation: \$10,000+

Source: Eaton

CHAdeMo (Level 3) Plug

- A coalition of Japanese industry:
 - Toyota, Mitsubishi, Nissan, Fuji Heavy Industries and Tokyo Electric Power Company to form 'CHAdeMO'
 - Standard in Japan & Europe
 - North America?

What is Plug'nDrive Ontario?

A not-for-profit coalition engaging in activities that will accelerate the adoption of electric vehicles (EVs) and maximize their environmental and economic benefits for consumers and businesses in Ontario.

Board of Directors to date:

- David Collie CEO, Electrical Safety Authority
- Dennis Edell CEO, Rain 43
- Len Griffiths Partner, Bennett Jones Law Firm
- Jim Keech CEO, Kingston Utilities and Chair of EDA
- Don MacKinnon President, Power Workers' Union
- Tom Mitchell CEO, Ontario Power Generation
- Gerry Smallegange CEO, Burlington Hydro
- Lawrence Zimmering CEO, RedBud Capital Corporation

Business Priorities

1. Education and Awareness

- Create a one-stop shop for information on EVs in Ontario;
- Road show to educate and excite consumers on benefits of EVs;
- Movie screenings "Revenge of the Electric Car".

2. Research

Engage in research that help fill the gaps needed to advance EV deployment and influence consumer behaviours.

3. Infrastructure

Promote the development of EV infrastructure, particularly home charging and off-peak charging solutions as well as critical public infrastructure.

Proposed Road Show Stops

Barrie, Guelph, Hamilton, Kingston, Kitchener-Waterloo, London, Niagara, Ottawa, Toronto

Meetings/Consultations/Networking with stakeholders

EV Adoption is Unpredictable

Charging Behaviour: *Time of Charge in Absence of Cost*

Grid Impact: EV Load Equals Home Load

Home Usage
Home Charger Usage

²³ Source: Toronto Hydro

Conclusions: Charging Behaviour

- Range anxiety lessens over time skipped charge days and shorter charge cycles
- 2. Charging typically does not commence with home arrival
- 3. Charging does not approach full discharge (8 hrs)
- 4. Public charging availability impacts charging behaviour significantly
- 5. Other incentives play a dominant role in the use of public charging
- 6. Charge time may not be significantly impacted by TOU rates

Dimensions (Shown with Advanced Cord Management)

rive Ontario

Conclusions: Grid Impact

- EV adoption is more of a distribution issue rather than transmission or generation
- 2. Need a system to inform utility companies of EV installations to allow greater management
- 3. Average EV load is approximately 182% of the home load while charging
- 4. EV charging energy and costs are low relative to home energy and costs
- 5. Battery thermal management is an additive load that should be analyzed

Key Challenges and Opportunities

- Vehicle emissions are Ontario's largest source GHG emissions
- Plug-in vehicles are an important solution, allowing people to switch from gasoline to clean electrons
- Charging at night at night when emissions are lowest and prices are lowest maximizes both the economic and environmental benefits to Ontario
- Ontario has a unique combination of a clean generating mix, time of use pricing, smart meters and a vibrant auto sector, creating the opportunity to be a world leader in the commercialization of plug-in electric vehicles
- Some distribution challenges but not insurmountable.
- LDC's need to be 'in the loop'!

plugndrive.ca

PlugNDrive

Plug'nDrive Ontario

